
AOP for Legacy Environments, a Case Study

Bram Adams, Kris De Schutter and Andy Zaidman

{kris.deschutter,bram.adams}@UGent.be
SEL, INTEC, Ghent University, Belgium

andy.zaidman@ua.ac.be
LORE, University of Antwerp, Belgium

ABSTRACT
We present a case study where we applied Aspect Orientation (AO)
against an industrial, legacy, non Object Oriented application, in
an effort to regain lost knowledge thereof. We start off by briefly
discussing some of the problems which arise in such software, as
well as how aspects might aid in alleviating them. We then discuss
the implementation of an aspect language for C,aspicere, which
is based on declarative pointcuts and meta information. Finally,
we present the case study itself, as well as preliminary results of
regained knowledge of the system.

Keywords
Aspect Oriented Programming, Legacy Software, C, Evolution, Case
Study

1. INTRODUCTION
Legacy software is all-around: software that is still very much use-
ful to an organization – quite often evenindispensable– but a bur-
den nevertheless. A burden because the adaptation, integration with
newer technologies or simply maintenance to keep the software
synchronized with the needs of the business, carries a cost that is
too great. This burden can even be exaggerated when the original
developers, experienced maintainers or up-to-date documentation
are not available.

Apart from a status-quo scenario, in which the business has to adapt
to the software, three scenarios are frequently occurring:

1. Often, in an attempt to limit the costs, the old application is
”wrapped” and becomes a component in a newer software
system. In this scenario, the software still delivers its useful
functionality, with the flexibility of a new environment. This
works great and the fact that the old software is still present
is slowly forgotten. This leads to a phenomenon which can
be called theblack-box syndrome: the old application, now
component in the new system, is trusted for what it does, but
nobody knows – or wants to know – what goes on internally
(white box).

2. Another scenario can be a total rewrite of the application,
from the legacy environment, to the desired one.

3. A third possibility is a mix of the previous two, in which the
old application is seriously changed before being set-up as a
component in the new environment.

For all three scenarios and certainly for scenarios two and three, the
software engineer needs a good basic understanding of the applica-
tion in order to start his/her reengineering operation. This is where
we think thatAspect Oriented Programming(AOP) can make a

difference. With the general ability to insertadvicein all functions
and procedures or the fine-grained injection of code with the help
of precisely defined pointcuts, we are now able to perform dynamic
analysis in a clean and efficient way.

At Ghent University, a framework has been developed to introduce
AOP in legacy languages like Cobol [18] and C [2]. The latter is
calledaspicere1. This paper applies it on an industrial case study,
provided by one of our partners in the ARRIBA (Architectural Re-
sources for the Restructuring and Integration of Business Applica-
tions) research-project2.

2. THE CONCEPT

2.1 Legacy code and AOP
AO is a relatively new paradigm, which has grown from the limita-
tions of Object Orientation (OO) [13], and a fortiori those of older
paradigms. OO takes an object-centric view to software develop-
ment, where a programmer describes objects, how they should be-
have and in what ways they should interact with other objects.

When faced with crosscutting concerns, i.e. concerns which don’t
walk nicely along the lines set out by inheritance, association, etc.,
OO degrades to the procedural programming style it ought to re-
place. When embracing AOP however, aspects manage to con-
tain this extra complexity in a module of its own, and to reroute
any interaction with the interface exposed by the base program3 to
this module and back. More formally, aspects allow us toquan-
tify (throughpointcuts) which events in the flow of a program (join
points) interest us, and what we would have to happen at those
points (advice). Hence we can ‘describe’ what some concern means
to an application and have theaspect-weavertake care of the hard
and repetitive bits for us.

Note however that, although AO has rarely been applied outside of
OO, none of the commonly known crosscutting concerns are in-
herently tied to Object Oriented environments. Yet there seems to
be more than enough reason to backport AO’s ideas to program-
ming languages and paradigms which had been given up for high
tech language research. We mustn’t forget that while the academic
world lives at the edge of knowledge, their ideas and formalisms
(once they’ve matured enough) get adapted by the industry who ex-
pect their new expensive acquisition to serve them for many years.
1”aspicere” is a Latin verb and means ”to look at”. Its past participle is ”aspectus”, so
the link with AOP is pretty clear.
2Sponsored by the IWT, Flanders
3A rather fuzzy concept, as there is no widely accepted definition for it yet. This is a
consequence of the relatively young age of AOP and its rather pragmatic development
(ie. there is no all-encompassing theorethical foundation). It has now developed into a
hot research topic [14, 3, 23].

1

Conversely, this also means that they’re stuck with a huge portfolio
of legacy technologies they can’t afford to just give up, but which
suffer from the same symptoms regarding crosscutting concerns as,
say, the relatively younger Java applications.

Knowing this, AOP in the context of Cobol, C, PL/1, . . . really
makes sense. Aspects might be used for such basic things as patch-
ing of existing software, as well as more complex things which aid
in the integration of business applications. Aspects could be used
for mining business rules [19] and program logic in order to refactor
legacy systems to more sound architectures. They can be useful for
enforcing good coding practices. E.g. you could prohibit program-
mers from calling other modules’ internal functions. Performing
automatic checks for memory leaks, logging, etc. through aspects
also frees up the programmer’s mind for the really interesting con-
cerns. There are lots of opportunities here. And the non-intrusive
nature of aspects makes all this ever more attractive.

As an added bonus, by seeing how AO lives and breathes inside
these legacy environments we might gain a better understanding of
what Aspect Orientation really is all about.

As part of our research for AOP in legacy systems, we have there-
fore developed a framework capable of extending procedural lan-
guages like Cobol and C with AOP-constructs. Ascobble has been
described and situated in this framework in [18], we spend this pa-
per on its siblingaspicere and an industrial case study on which
we applied it.

2.2 The case study
The industrial partner that we cooperated with in the context of this
research experiment is Kava4. Kava is a non-profit organization
that groups over a thousand Flemish pharmacists. While originally
safeguarding the interests of the pharmaceutical profession, it has
evolved into a full fledged service-oriented provider. Among the
services they offer is a tarification service —determining the price
of medication based on the patient’s medical insurance. As such
they act as a financial and administrative go-between between the
pharmacists and the national healthcare insurance institutions.

Kava was among the first to realize the need for an automated tar-
ification process, and have taken it on themselves to deliver this
to their members. Some 10 years ago, they developed a suite of
applications written in non-ANSI C for this purpose. Due to suc-
cessive healthcare regulation changes and forthcoming changes in
the dataflow, they feel the necessity to reengineer their applications.

Kava has just finished the process of porting their application to
a fully ANSI-C compliant version, running on Linux. Over the
course of this migration effort it was noted that documentation of
the application was outdated. This provided us with the perfect op-
portunity to undertake the following re-documentation experiment.
Techniques akin to search engines like GoogleTM , are able to detect
tight couplings between components. This mined knowledge could
then be validated with the original design as known/understood by
the programmers. We’ll show that to collect the needed data in an
unobtrusive way, AOP fits perfectly.

What’s more, we also found some nasty residues left behind by the
original non-ANSI C implementation, on which we will elaborate
in section3.1and6.1.

2.3 Plan of the paper
We will start off with a short overview of our aspect language for C,
codenamedaspicere. It is not our intention to give an authorative
overview of its design, but rather to give the reader a feel for the

4
http://www.kava.be/

expressivity and complexity of the language. (If you’re interested
to learn more we refer you to [2] for aspicere and [18] for cob-
ble, as well as the websites5 for these projects.). We then describe
the transformation framework which is the driving force underly-
ing our aspect languages. Next, the techniques used to measure
program couplings will be described as well as their application at
Kava. We also show our results and findings from the case study
itself, and close with some concluding remarks.

3. ASPICERE
In [5], the authors proposed a language extension for C to provide
AOP-functionality. Their work was based on AspectJ, still the best
known AOP-implementation, because a legacy language like C can
be regarded as some sort of subset of a modern OO-language. Prac-
tical tools for this newly designed aspect language have been hard
to find and, even then, difficult to master.

As there exists a large C codebase and C still is a very popular
language (Unix/Linux/BSD kernels, Open Source software, . . .),
we decided to turn our efforts and tools to C. During a Master’s
thesis [24] a first prototype ofaspicere6 got developed, using a
very limited subset of AspectC. Although it turned out to be use-
ful for some purposes, the AspectC-like pointcut language seemed
too restrictive. In [2], the authors illustrate this bold statement and
propose a pointcut language based on Prolog (inspired by the work
of [11]). In fact, this turns out to be a generalization of the approach
taken incobble.

3.1 An Aspect for Safe String Handling
We’ll presentaspicere’s syntax and its features alongside the fol-
lowing task, a residue of Kava’s recent migration to the Linux-
platform:

The C-libraries on the old system were very fault-tolerant
with regard to string handling. When atoi() was passed a
null pointer, the particular implementation of this standard
function didn’t throw up a segmentation fault, but gracely re-
turned 0. This behaviour was the compiler vendor’s own de-
cision, and not illegal as his system was not ANSI-compliant.
When converting to Linux and its GCC-compiler, suddenly
the safety net around strcpy(), atoi(), . . . disappear, resulting
in random segmentation faults.

How to solve this problem?
• Searching all infected functions and surrounding them with

proper null pointer detection code. This is the most tiresome
and error-prone approach, producing very tangled code.

• Redirecting the original call to new, custom wrapper func-
tions. This still requires the manual inclusion of the right
header files and serious modification of makefiles.

• By cunningly declaring the relevant function names as macros
mapped to the names of corresponding wrapper functions,
and expanding them right before every compilation, the sec-
ond solution is emulated somehow in an easier way (the header
and makefile remark still hold in theory). Biggest drawback
is the extremely untransparent nature of this approach: if it
is not documented in a very attention-seeking way, then this
mechanism will pass on undetected.

• Identifying this concern as a crosscutting one and encapsu-
lating it into an aspect, yields a better solution: equally mod-
ularized as the previous one, yet much more transparent and
self-documenting. Yes, the fault tolerance becomes a proper

5aspicere: http://allserv.ugent.be/˜kdschutt/aspicere/
cobble: http://allserv.ugent.be/˜kdschutt/cobble/
6

http://allserv.ugent.be/˜kdschutt/aspicere/

2

http://www.kava.be/
http://allserv.ugent.be/~kdschutt/aspicere/
http://allserv.ugent.be/~kdschutt/cobble/
http://allserv.ugent.be/~kdschutt/aspicere/

part of the application instead of being enforced by a partic-
ular compiler configuration. We’ll illustrate (a part of)as-
picere ’s capabilities while elaborating some more on this
issue.

Although this is a classic AOP example, it’s interesting to know on
which solutions one has to fall back in C systems without AOP and
to face them with the intriguing simplicity of AOP’s approach.

The structure of an ordinary aspect looks like this:
1. inclusion of header files
2. declarations of static/global variables
3. auxiliary method declarations and definitions
4. various advice to do the crosscutting work

An aspect is just an ordinary C compilation unit with variables,
methods, . . . , except for the advice structures. What’s the scope of
the variables and plain methods? Static ones hide themselves from
everything outside the enclosing aspect. The others are in fact vis-
ible from all other modules and can be interpreted as application-
level InterType Declarations (ITD) in AspectJ. They are injected
into the global namespace, which requires careful thinking to avoid
name collision or unwanted exposure of data and/or behavior. More
fine-grained ITD is one of our future plans.

The blueprint of our various advices is pretty simple. Surround
calls to infected methods by a null pointer check and only if every-
thing is alright, the originally called method should be invoked.

ReturnType around safe_ato (Src,ReturnType) on (Jp):
call(Jp,"ato.",[Src])

&& type(Jp,ReturnType) {
ReturnType dst;

if (Src == NULL) {
dst = 0; /* compiler does the cast */

} else {
dst = proceed ();

}

return dst;
}

Here, we defined an advice calledsafeato. It catches calls to all
ato.()-functions7, then there’s a check on null pointers. If every-
thing is safe, the original call toato.() proceeds, otherwise zero is
returned. This perfectly illustrates our binding mechanism8. In-
deed, thanks to the type variable “ReturnType”, we only need to
write down one advice to check three functions. Another use of
bindings is the capturing of function call arguments likeSrcdoes.
It’s perfectly possible to alterSrcbefore doing theproceed ()-call,
although the latter notation doesn’t make this clear. In4.4, we will
see that our weaver treats these bindings as weave-time macro’s.

Looking a bit closer to the syntax of said advice, we see that an
(around9) advice definition resembles that of a method quite a lot.
Indeed, we see:
return type Just as in AspectJ, around-advice must have the same

return type as the advised method, because its semantics dic-
tate to surround the advised join point entirely. As illustrated,
aspicere allows a logic variable called a binding as return
type, yielding a kind of template functionality.

7The “.” shows that we allow full regular expression support.
8Of course we also advise methods likeatok(), atom(), . . . if these
exist. This can be restricted by using Prolog facts as metadata in a
pointcut definition (PCD; see3.2).
9before andafter can easily be emulated by putting the call to
proceed () at the beginning or at the end of the advice body.

name This is rather unnecessary at the moment (except for doc-
umenting purposes), because advice is never called directly
(which is in fact the most discriminating characteristic of ad-
vice compared to ordinary methods). However, some people
have argued in favor of turning advice into real methods and
mapping them to the right join points using a binding spec-
ification construct [20], effectively yielding more loose cou-
pling between advice and pointcut. We hope to examine this
later on.

parameters These are in fact the externally visible bindings of
the current pointcut definition. They are comparable to pa-
rameters of a real method, but they disappear after weaving.
They aren’t typed, because typing constraints can be incor-
porated separately as Prolog predicates in the pointcut defi-
nition. Note that the names of these bindings as well as those
of the internal ones, all start with a capital letter, in line with
common Prolog conventions.

body Cf. methods, but bindings can occur and there are also two
special functions available.proceed() continues execution of
the original, advised join point, and join point context can be
retrieved throughthis joinpoint().

The biggest differences lie in theon-clause and in the pointcut def-
inition. In the former, we make the name of the chosen join point
explicit, because it’s in fact a variable. As stated before, the latter
captures those points in the base program that should be advised.
It’s important to realise that each pointcut expression really corre-
sponds to one Prolog rule and that all primitive pointcuts likecall
are predicates too instead of fixed keywords. So, there’s an implicit
correspondence between the composition of a pointcut expression
using “||”, “&&” and “!”, and a genuine Prolog predicate. We’ll
illustrate this in3.3.

The examples we show are representative for the general predicates
aspicere offers, in the sense that they’re currently all static: they
only work if we can perfectly say that a join point will match a
certain PCD. This means that there aren’t any residual checks left
in the woven code to find out whether advice is applicable to a join
point. Dynamic pointcuts likecflowaren’t excluded a priori from
aspicere, but they are part of our future work.

3.2 An Aspect for database recovery
To illustrate Prolog’s ability to build predicates for navigating through
the static structure of a base program, we’ll tackle the next problem
(unrelated to the Kava case):

Consider an application which accesses a database. We’d
like to catch database errors in such a way that, depending
on the specific error code, failed SQL-queries are retried a
number of times. This recovery procedure should only be ac-
tive if the error occurs in an important method.

This concern could be handled with AOP in two ways:
• We could write down one advice with in its PCD a disjunc-

tion of all possible (important) enclosing methods and in its
body a giant switch-case construct to select the right number
of recovery attempts. This is not a satisfiable solution, as im-
portant metadata (error code and corresponding number of
retry attempts) is hidden in the advice body and can get out
of date.

• As the concept of recovery is the same across all error codes
and only depends on some metadata, we can easily write
this meta-knowledge down in Prolog facts and use these in
our PCDs. Even better, we could write Prolog rules which
(thanks to the Java-nature of our Prolog engine, see4.4) can
access at weave-time any data source to find all relevant error

3

codes and the appropriate number of recovery attempts. So,
using Prolog, we can make use of modularized metadata in
our PCDs.

This gives us the following advice for the current problem:

void around recover(ErrNr, Retry, ErrStr) on (Jp):
call(Jp,"_iqcftch",_)
&& critical_call(Jp)
&& sql_redo(ErrNr,Retry)
&& sql_code(ErrNr,ErrDescr)
&& stringify(ErrDescr,ErrStr) {

/* Check if SQL-engine returned error with ID
ErrNr and retry at most Retry times. */

}

The extra metadata can be defined as follows:

sql_code(-666,’Time limit exceeded.’).
/* some other codes with their description */

sql_redo(-666,2).
/* some other codes with the relevant number of

retry attempts */

critical_method(’monthlyPayment’).
critical_call(Jp) :-

enclosingMethod(Jp,EncMethod),
name(EncMethod, Name),
critical_method(Name).

The descriptions could just as easily be fetched from the database
vendor’s website by rewriting the first list of predicates into a more
complex rule. Note that this metadata approach is very compatible
with the XPI-theory of [23].

3.3 Duality of PCDs
To end our discussion ofaspicere, we just want to show that we
could equally have written our last advice as:

void around recover(ErrNr, Retry, ErrStr) on (Jp):
recoverableSQLCall(Jp,ErrNr,Retry,ErrStr)

...

with the following Prolog predicate defined in a separate module:

recoverableSQLCall(Jp,ErrNr,Retry,ErrStr):-
call(Jp,"_iqcftch",_),
critical_call(Jp),
sql_redo(ErrNr,Retry),
sql_code(ErrNr,ErrDescr),
stringify(ErrDescr,ErrStr).

This is exactly what happens behind the scenes of our prototype
weaver.

4. THE FRAMEWORK

4.1 Up-front considerations
According to [10], we face two generic obstacles when trying to
implement AOP support for a legacy language. First, we need to get
a handle on a front-end for the relevant legacy language. For C, this
is not that impossible, but it is indeed a major challenge in the case
of Cobol, as has been argued elsewhere [17]. Secondly, we need to
get a handle on a suitable weaving framework. At the very least,
we require a basic transformation framework, which allows us to
express the weaving semantics (by which we mean the elimination
of AOP constructs in terms of transformations). This will be the
topic of this section.

The framework, codenamedYerna Lindale10, operates at the level
of source code and uses XML for the internal representation of that
code’s AST. As it is generally accepted that programs can be repre-
sented efficiently as trees, XML seems a natural fit for this because
of its inherent navigability and the myriad of existing and emerg-
ing technologies like XPath, XSLT, XQuery, ... The instantiation of
Yerna Lindale in the context ofaspicere is illustrated in Figure1.

Figure 1: The weaving process.

As we don’t know of the existence or feasibility of any system capa-
ble of extracting the AST-representation of an executable (possibly
at run-time), transforming it and feeding it back, it’s obvious that
our approach is tied to a static weaver (the tranformation engine).
But aren’t there better alternatives?

Weaving compiled code implies commitment to a specific vendor
including dialect and object format. Language-independent load-
time weavers [16] (for .NET, Java or otherwise) are challenged by
the distance between byte- or machine code andaspicere’s or cob-
ble’s pointcut descriptions. Language-independent weavers at the
source-code level, such as SourceWeave.NET [12], require specific
language front-ends that appeal to the underlying source-code mod-
els (i.e., CodeDOM for SourceWeave.NET). Recently, some aspect
languages for C emerged (Arachne [6] and TOSKANA [7]) featur-
ing run-time weaving. Although this dynamic (de)weaving opens
lots of opportunities, they encounter problems inherent to today’s
executable formats and runtime environments. In compiled code, a
lot of useful implementation is stripped, so that it’s hard to define
more complex pointcut expressions. There’s also a performance
penalty, as a running executable can’t yet be recompiled together
with the advice to perform (compile-time) optimizations. The peo-
ple of TOSKANA now try to solve these issues by turning to a
virtual machine [8]. Conclusion: our approach is not redundant.

The use of XML for the intermediate representation of source code
is not uncommon either; it is practised for ‘normal’ languages (such
as Java [4] and C [26]) and also for languages with a weaving se-
mantics [9, 21]. The important advantage of this approach is that
standard APIs and tools for XML processing can be readily used.
This buys us great flexibility and opportunities for experimentation
with different technologies. There are known scalability problems,
which require extra effort for compact XML representations or the
use of tool-to-tool XML APIs without intermediate textual XML
content [22]. In our prototype, we currently neglect these issues.
We can report that the ratioXML format to concrete syntax(both in
text representation) lies typically around 12 to 13 with maximum
values below 30 and above 6, which is still quite tractable. We
haven’t obfuscated the XML-tags, so we have some leeway there.

4.2 Front-end Setup
Development of the front-end foraspicere (first step in Figure1)
started after that ofcobble as a proof of concept of its weaving ar-

10Quenya (High Elvish) for ‘old music’ — this for fans of J. R. R. Tolkien.

4

functionDef {... }:
(

(functionDeclSpecifiers) => ds:functionDeclSpecifiers
| //epsilon

)
declName = d:declarator[true] {... }
(decl:declaration {... })*
(VARARGS)?
(SEMI)* {... }
com:compoundStatement[declName] {... }
;

Figure 2: Grammar fragment for function definitions.

chitecture. As is explained in [18], it’s nearly impossible to write
out a correct, unambiguous grammar for Cobol, and then there’s
still the fact that there are dozens of similar dialects out there. For
this reason, we decided to use an ambiguous grammar together with
btyacc, a backtracking version of the better-known yacc. This way,
any ambiguities are resolved by running over all possible alterna-
tives until a rule is satisfied. In line with AspectJ, we added AOP
constructs directly to Cobol (better: its grammar).

For aspicere, the same strategy was followed. The base of the
grammar was found online11, and was subsequently transformed to
comply to the format used by some other necessary tools [18]. Just
as withcobble, AOP-extensions were added to the grammar and
then we generated a backtracking parser using btyacc.

During the experiment at Kava, it became clear that the flexibility
of our grammars had some serious downsides too:

• When parsing complicated statements like moderately-sized
switch-case constructs, speed proved to be a real bottleneck.
Apparently, there is too much ambiguity, which results into
massive backtracking (up to several hours).

• Because C code can be very cryptic and tangled at times (as
opposed to the very verbose Cobol style), the language itself
gives rise to such a degree of ambiguity that the parser even-
tually produces wrong output (XML). This is not to say that
we get complete nonsense, but part of our XML just leads to
unreliable results.

Fortunately, we were experimenting at that time with an ANTLR-
parser found athttp://www.antlr.org/grammar/cgram .
Because it is a non-backtracking parser, we get much faster pars-
ing times. The downside is that this approach is not amenable to
cobble, as Cobol is scattered across dozens of dialects, of which
none can be described in a traditional yacc- or ANTLR-manner.
Similarly, we had to be much more attentive on integrating AOP-
constructs in it. Now the parser does its job in less than half a
minute in all cases. Figure2 shows a small part of our grammar.

As mentioned before, the output of the parser is an XML-file repre-
senting the abstract syntax tree of the parsed source file. In fact, we
go through an expensive text representation of XML, which could
be avoided indeed, using a tool-to-tool XML API [22]. As our
ANTLR-parser is written in Java, this could now be much easier to
do.
The XML representation encodes all details of layout and com-
ments, which is less important for AOP, since a user is not sup-
posed to study the woven code. It is important however when using
the framework for re-engineering transformations and it also sim-
plifies our unparser (step 3 in Figure1), which maps XML data to
concrete Cobol or C syntax. In Figure3, we illustrate the XML
representation corresponding to the grammar rule of Figure2.

So, it’s clear that Yerna Lindale doesn’t rely on one particular type
of parsers. As long as we have a parser which can generate XML

11
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html

<NFunctionDef>
<NFunctionDeclarationSpecifiers>

<NTypeSpecifier>
<string>int</string><!-- -->

</NTypeSpecifier>
</NFunctionDeclarationSpecifiers>
<NDeclarator>

<NIdentifier>
<string>main</string><!-- -->

</NIdentifier>
<string>(</string><!-- -->
<NParameterDeclaration>

<NDeclarationSpecifiers>
<NTypeSpecifier>

<string>void</string><!-- -->
</NTypeSpecifier>

</NDeclarationSpecifiers>
</NParameterDeclaration>
<string>)</string><!-- -->

</NDeclarator>
<NCompoundStatement>

<string> {</string><!-- -->
...

<string> }</string><!-- -->
</NCompoundStatement>

</NFunctionDef>

Figure 3: XML element for int main(void) { . . . }

dumps of its ASTs, our framework will be able to handle things.
That’s whyaspicere’s ANTLR-parser could be easily fit in.

4.3 XML-based source-code manipulation
The second obstacle for AOP support [10] concerns the physical
weaving framework. Basically, the weaver processes XML via
DOM, and generates new XML (step 2 in Figure1). It is pretty
straightforward to locate pointcuts, advice and potential join-point
shadows in a DOM tree. For instance, to find a specific function
definition in a DOM tree, the following XPath expression does the
job12:

//NFunctionDef[
string(NDeclarator/NIdentifier/string)=’main’]

We have to note that the XML format is tied to a certain degree to
the grammar used. This means that all functionality operating on
the XML representation does not resist grammar changes. Also, we
cannot immediately serve multiple language-dialects. One solution
would be to follow a model-driven approach, where the grammar
structure is mapped to a more abstract format. We expect that exist-
ing work on language-independent source-level weavers [12], and,
more generally, on language implementation will be of use in this
context. Alternatively, one could buildaspicere into GCC 4.0 and
alleviate its new language-independent intermediate representation
[1].

4.4 Technology details for the weaver
Now, we’ll look a bit deeper into the details of the weaving itself.
Looking at Figure1, we see a high-level overview of the whole
process. Required inputs are one source code file at a time together
with all the considered aspects. Because we need preprocessed
source files to begin with, either the input files should be prepro-
cessed already oraspicere attempts to do this implicitly before
parsing (not shown on Figure1). After applyingaspicere, we get
a woven source code file which can then be fed to GCC13.

12For the moment, XPath alone suffices for our purposes, but we’re
well aware that XQuery is much more powerful.

13As a matter of fact,aspicere is largely platform-independent by
using Java-based languages in its implementation. Some minor
plug-and-play components are written for Unix/Linux platforms -

5

http://www.antlr.org/grammar/cgram
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html

The first steps of the weaving process consist of looking up all
available advices and separating their bodies from their PCDs. As
illustrated, these actions are straightforward using XPath. As a mat-
ter of fact we use a full-blown XSLT-transformation for the PCD-
part, as we transform them into Prolog rules. That’s because as
argued in [2], aspicere features a Prolog-based pointcut language
in which a PCD is really just a syntactically more polished way to
write down a genuine Prolog rule. This is illustrated in3.3.

The next step in our weaver immediately makes use of the Prolog
features to match advised join points in the base program. Here,
we opted for backward chaining. This means that instead of first
instantiating all join points as facts to check for each one in turn
which advices apply (rather imperative way of thinking), we query
each advice to know which join points are affected. Once we have
found all mappings, we need to transfer them from the Prolog en-
gine to the main component of the weaver.

As a sidenote, to allow easy integration of a large collection of tech-
nologies or formalisms (Java, Prolog, shell scripts, . . .), we built all
our tools on top of a custom integration framework for Java-based
technologies, calledlillambi14. Its concept is illustrated in Figure4.
The main component booting everything up is a script written in
BeanShell15, which offers more flexibility than the exclusive use
of compiled Java. Using a system of agents with associated prop-
erties, all sorts of technologies can be combined easily, like the
Prolog component for matching pointcuts to join point shadows
(TuProlog:16). As all languages are Java-based, all data being pro-
cessed is in the form of Java objects, and communication between
components requires no exotic technology.

Figure 4: Component integration framework.

Returning to the main discussion, we now have everything at our
disposal to start the physical weaving process. For every join point,
all its advices are woven by a weaver assigned to the current join
point type. Call join points get another weaver than execution join
points17. Basically, each advice is transformed into a set of reg-
ular functions (one instance per set of bindings), and each aspect
into a regular C module with its own static and global variables.
The woven base program then contains the necessary residue code.
When compiling it, the transformed aspects need to be linked in.
The actual weavers are implemented in Java using XML APIs for
DOM and XPath, as weaving merely boils down to restructuring of
a DOM tree.

One of the more interesting features of the weaving process (and
the Prolog connection), is the expansion of logic variables in the
advice code. As we have seen in section3, we can expose (bind)
logic variables used in the PCD of an advice, and integrate them at
the “right” places in the advice body (cf. macro or C++ template).
By “right”, we mean that as these variables arenot typed (the usual
case in Prolog), their usage should be considered wisely. This fea-
ture makes up for C’s lack of decent type relationships (other than

our test platforms - but these could easily be rewritten (and en-
abled).

14This means “multiple languages” in Quenya.
15BeanShell:http://www.beanshell.org/
16TuProloghttp://lia.deis.unibo.it/research/tuprolog/
17Currently, our prototype only handles call join points, but this is
only temporary.

typedef), reflection or any other metaprogramming tricks. As
such, it’s a necessity to be able to write sufficiently generic advices.

5. REVERSE ENGINEERING TECHNIQUES
Maintaining an application requires a certain level of understand-
ing of the system under consideration. Studies have shown that
attaining this level of understanding can take up to 50% of the time
budget [25]. As such, a technique that points to those parts of the
system that are critical – i.e. need to be understood – can be very
helpful when trying to familiarize oneself with an application. The
technique presented in this section tries to alleviate the program
comprehension problem.

5.1 Webmining
The basis for the technique we used for this case study is the mea-
surement of runtime coupling between modules of a system. To
overcome the typical problem of coupling measures – each measure
is between two classes or modules – we add webmining techniques
to make sure that not only coupling between two separate modules
is taken into account, but also a transitive measure for coupling is
used for determining the most important modules of a system [25].

In datamining, many successful techniques have been developed to
analyze the structure of the web. Typically, these methods consider
the Internet as a large graph, in which, based solely on the hyperlink
structure, important web pages can be identified. In this section we
show how to apply these webmining techniques to a call graph of a
program, in order to uncover important classes.

Based on the call graph of an execution trace of the application,
the HITS webmining algorithm [15] allows us to identify so-called
hubsandauthorities. Intuitively, on the one hand, hubs are pages
that refer to pages containing information rather than being infor-
mative themselves. Standard examples include web directories,
lists of personal pages, ... On the other hand, a page is called an
authority if it contains useful information.

The recursive relation between authority and hubiness is captured
by the following formulas.

hi =
X
i→j

w[i, j] · aj (1)

aj =
X
i→j

w[i, j] · hi (2)

The algorithm starts with initializing allh’s anda’s to 1, and re-
peatedly updates the values for all pages, using the formulas (1)
and (2). If after each update the values are normalized, this al-
gorithm is known to converge to stable sets of authority and hub
weights.

From previous case studies in the context of Object Oriented sys-
tems, we’ve learned that the classes that are catalogued as “hubs”
by the algorithm are the most critical components of the system and
are thus excellent candidates for early program understanding.

Example Consider the webgraph given in Figure5. Table1 shows
three iteration steps of the hub and authority scores (represented by
tuples(H,A)) for each of the five nodes from Figure5. From this,
we can conclude that2 and3 will be good authorities, whereas4
and5 will be good hubs, while1 will be a less good one.

5.2 Expected results
The result from applying the technique is an ordered list of classes
or modules, ranked according to their hubiness score. Taking the
best hubs from this ordered list, should give you the most critical

6

http://www.beanshell.org/
http://lia.deis.unibo.it/research/tuprolog/

1 2

4

3

5

Figure 5: Example web-graph

Nodes
1 2 3 4 5

Ite
ra

tio
ns 1 (1,1) (1,1) (1,1) (1,1) (1,1)

2 (2,0) (1,3) (0,3) (2,1) (2,0)
3 (4,0) (3,8) (0,5) (6,2) (6,0)
4

Table 1: Example of the iterative nature of the HITS algorithm

components of the system and as such the modules that need to be
understood first.

5.3 Setup of the experiment
To compute hubiness and authority scores, some tools have been
developed at the University of Antwerp. Given a detailed execution
trace of an application as input, they build up the corresponding call
graph and resolve the coupling metrics fairly quickly. To get this
trace in an unobtrusive way, is whereaspicere comes in18. One of
the two tracing advices (the other one is needed forvoid -methods)
is shown here:

RetType around tracing (RetType,FileStr) on (Jp):
call(Jp,"ˆ(?!.*printf$|.*scanf$).*$")
&& type(Jp,RetType)
&& !str_matches("void",RetType)
&& logfile(FileName)
&& stringify(FileName,FileStr) {

FILE* fp=fopen(FileStr,"a");
RetType i;

fprintf (fp,"before (%s in %s) \ n",
Jp->functionName,Jp->fileName);

fflush(fp);
i = proceed ();
fprintf (fp,"after (%s in %s) \ n",

Jp->functionName,Jp->fileName);
fclose(fp);

return i;
}

Note that the constant opening, flushing and closing of files is not
optimal. Normally, as aspects are transformed into plain compila-
tion modules and advice into ordinary methods of those modules,
we could get hold of a static file pointer and use this throughout
the whole program. However, as will be explained in6.1, this
would mean we had to revise the whole make-hierarchy to link
these uniques modules in. Instead, we added a “legacy” mode
to our weaver in which advice is transformed to methods of the
modules part of the advised base program. This way, the make-
architecture remains untouched, but we lose the power of static
variables and methods.

18Don’t forget the advice of section3.1either.

Module Hubiness score
voorschrift scherm.c 1.000000
ua.ec 0.838293
kies apot.c 0.714017
scroll form.c 0.698913

Table 2: The highest 13% scoring modules according to hubi-
ness.

6. RESULTS
Table 2 shows the results of applying the complete process on a
small, but representative application of the Kava application suite,
the so-called ”ua” application, that allows for the administration
of medical prescriptions. The application consists of 30 modules
and Table2 shows those 4 modules that are likely essential in the
program understanding process, as these 4 modules are the best
hubs. The scores in the second column, are relative hubiness val-
ues. voorschrift scherm.cis thus the module that has the most
outgoing calls, and the score forua.ecis relative to that ofvoor-
schrift scherm.c.

Granted, we have – as yet – not validated these results with the
developers. Because we are in the process of conducting a larger-
scale experiment at Kava, we didn’t want to put a bias on the devel-
opers, by presenting them with these preliminary results. As such,
for the moment we trust on the earlier validation of the webmining
technique from previous case studies [25] 19.

6.1 Difficulties
As alluded to in2.2, some remains of the non-ANSI implementa-
tion are still visible in the new system. In non-ANSI C, method
declarations with empty argument list are allowed. Actual declara-
tion of their arguments is postponed to the corresponding method
definitions. As is the case with ellipsis-carrying methods, discovery
of the proper argument types must happen from their calling con-
text. Because this type-inferencing is rather complex, it’s not fully
integrated yet inaspicere. Instead of ignoring the whole base pro-
gram, we chose to ”skip” bad join points, introducing some errors
in our measurements. To be more precise, we advised 367 files, of
which 125 contained skipped join points (one third). Of the 57015
discovered join points, there were 2362 filtered out, or a minor 4
percent.

While preparing the case study, we faced some other problems as
well. To fit aspicere into the existing build process, we had to
adapt the existing Makefiles. As these were properly structured,
most of this work could be automated. Eventually, manual in-
spection was needed to verify some minor peculiarities. Having a
weaver direcly inside GCC would surely make these things easier.

Finally, the efficiency of our weaving process isn’t optimal yet.
While a normal build of the system takes approximtely 10 to 20
minutes, the integration of our weaver extends this to 17 hours and
38 minutes! Most of this time is spent on the join point matching,
an area which needs (and still allows) some serious improvements.
Of course, asaspicere is a preprocessor to GCC, the weaving time
will always take longer than the original build process.

7. CONCLUDING REMARKS
We have shown that a declarative approach to the weaving of legacy
applications based on an intermediate XML representation is a very

19We expect to have the complete set of results and the thorough
validation of these results within two months.

7

flexible and manageable solution. The main concepts in AO (quan-
tification and obliviousness) remain valid within the context of non-
OO languages. The differences seem to be limited to thekind of
events in the flow of an application an aspect may be applied to.

We also argued that in order to make advice as generic as possible,
Aspect Oriented extensions to environments which lack reflective
capabilities need to provide some form of metaprogramming.

The webmining reengineering solution we chose, allowed us to
identify four modules from the preliminary case study (from a total
of thirty) that are important from a program comprehension point
of view. A validation with the original developers and maintainers
of the software is scheduled for the very near future.

8. ACKNOWLEDGEMENTS
We would like to thank Kava for their cooperation and very generous support.

Kris De Schutter and Andy Zaidman received support within the Belgium research

project ARRIBA (ArchitecturalResources for theRestructuring andIntegration of

BusinessApplications), sponsored by the IWT, Flanders. Bram Adams is supported

by a BOF grant from Ghent University.

9. REFERENCES
[1] Bram Adams. Language-independent aspect weaving. 2005.

Extended abstract, GTTSE ’05 Summer School (Braga).
[2] Bram Adams and Tom Tourẃe. Aspect Orientation for C:

Express yourself. In3rd Software-Engineering Properties of
Languages and Aspect Technologies Workshop (SPLAT),
AOSD 2005, 2005.

[3] Jonathan Aldrich. Open modules: modular reasoning about
advice. 2005. Submitted for publication.

[4] Greg J. Badros. JavaML: a markup language for Java source
code.Comput. Networks, 33(1-6):159–177, 2000.

[5] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg
Smolyn. Using AspectC to improve the modularity of
path-specific customization in operating system code.
26(5):88–98, 2001.

[6] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc
Menaud, Marc Śegura-Devillechaise, and Mario Südholt. An
expressive aspect language for system applications with
Arachne. InAOSD ’05, pages 27–38, New York, NY, USA,
2005. ACM Press.

[7] Michael Engel and Bernd Freisleben. Supporting autonomic
computing functionality via dynamic operating system
kernel aspects. InAOSD ’05, pages 51–62, New York, NY,
USA, 2005. ACM Press.

[8] Michael Engel and Bernd Freisleben. Using a LowLevel
Virtual Machine to improve dynamic aspect support in
operating system kernels. In4th AOSD workshop on Aspects,
Components, and Patterns for Infrastructure Software
(ACP4IS), AOSD, 2005.

[9] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck.
Handling crosscutting constraints in domain-specific
modeling.Commun. ACM, 44(10):87–93, 2001.

[10] Jeff Gray and Suman Roychoudhury. A technique for
constructing aspect weavers using a program transformation
engine. InAOSD ’04, pages 36–45, New York, NY, USA,
2004. ACM Press.

[11] Kris Gybels and Johan Brichau. Arranging language features
for more robust pattern-based crosscuts. InAOSD ’03, pages
60–69, New York, NY, USA, 2003. ACM Press.

[12] Andrew Jackson and Siobhán Clarke. SourceWeave.NET:
Source-level cross-language Aspect Oriented Programming.
2004.

[13] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect oriented programming. InProceedings ECOOP,
volume 1241, pages 220–242. Springer-Verlag, 1997.

[14] Gregor Kiczales and Mira Mezini. Aspect Oriented
Programming and modular reasoning. InICSE ’05, pages
49–58, New York, NY, USA, 2005. ACM Press.

[15] Jon M. Kleinberg. Authoritative sources in a hyperlinked
environment.Journal of the ACM, 46(5):604–632, 1999.

[16] Donal Lafferty and Vinny Cahill. Language-independent
Aspect Oriented Programming. InOOPSLA ’03, pages 1–12,
New York, NY, USA, 2003. ACM Press.

[17] R. Lämmel and C. Verhoef. Semi-automatic Grammar
Recovery.Software—Practice & Experience,
31(15):1395–1438, December 2001.

[18] Ralf Lämmel and Kris De Schutter. What does Aspect
Oriented Programming mean to Cobol? InAOSD ’05, pages
99–110, New York, NY, USA, 2005. ACM Press.

[19] Isabel Michiels, Kris De Schutter, Theo D’Hondt, and
Ghislain Hoffman. Using dynamic aspect to extract business
rules from legacy code. InOnline proceedings of Dynamic
Aspects Workshop at AOSD, 2004.
http://aosd.net/2005/workshops/daw/ .

[20] Istvan Nagy, Lodewijk Bergmans, Gurcan Gulesir, Pascal
Durr, and Mehmet Aksit. Generic, property based queries for
evolvable weaving specifications. In3rd
Software-Engineering Properties of Languages and Aspect
Technologies Workshop, 2005.

[21] Stefan Schonger, Elke Pulvermüller, and Stefan Sarstedt.
Aspect Oriented Programming and component weaving:
Using XML representations of abstract syntax trees. In2nd
German GI Workshop on Aspect Oriented Software
Development, pages 59 – 64. University of Bonn, 2002.
Technical Report No. IAI-TR-2002-1, Rheinische
Friedrich-Wilhelms-Universiẗat Bonn, Institut f̈ur Informatik
III.

[22] Susan Elliott Sim. Next generation data interchange:
Tool-to-tool application program interfaces. InWCRE, pages
278–280, 2000.

[23] Kevin Sullivan, William Griswold, Yuanyuan Song,
Yuanfang Cai, Macneil Shonle, Nishit Tewari, and Hridesh
Rajan. On the criteria to be used in decomposing systems
into aspects. InESEC/FSE 2005, to appear, 2005.

[24] Stijn Van Wonterghem. Aspect-oriëntatie bij procedurele
programmeertalen, zoals C. Master’s thesis, Ghent
University, 2004.

[25] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan
Paredaens. Applying webmining techniques to execution
traces to support the program comprehension process. In
CSMR 2005, pages 134–142. IEEE Computer Society, 2005.

[26] Ying Zou and Kostas Kontogiannis. A framework for
migrating procedural code to object oriented platforms. In
8th IEEE Asia-Pacific Software Engineering Conference
(APSEC), pages 408–418. IEEE, 2001.

8

http://aosd.net/2005/workshops/daw/

